The Existence of Predictive Complexity and the Legendre Transformation

نویسندگان

  • Yuri Kalnishkan
  • Volodya Vovk
چکیده

Predictive complexity is a generalisation of Kolmogorov complexity. In this paper we point out some properties of predictive complexity connected with the Legendre ({Young{Fenchel) transformation. Our main result is that mixability is necessary for the existence of conditional predictive complexity (it is known to be su cient under very mild assumptions). We formulate a di erential criterion of mixability and show that it reduces to a very simple form if we employ the Legendre transformation. The Legendre transformation also turns out to have a probabilistic meaning which allows us to prove that a variant of predictive complexity speci es a unique (up to a parametrisation) mixable game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss Functions , Complexities , and the Legendre Transformation 1

The paper introduces a way of re-constructing a loss function from predictive complexity. We show that a loss function and expectations of the corresponding predictive complexity w.r.t. the Bernoulli distribution are related through the Legendre transformation. It is shown that if two loss functions specify the same complexity then they are equivalent in a strong sense. The expectations are als...

متن کامل

Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...

متن کامل

Pseudospectral Fourier reconstruction with IPRM

The Inverse Polynomial Reconstruction Method (IPRM) has been recently introduced by J.-H. Jung and B. Shizgal in order to remedy the Gibbs phenomenon, see [2], [3], [4], [5]. Their main idea is to reconstruct a given function from its n Fourier coefficients as an algebraic polynomial of degree n− 1. This leads to an n × n system of linear equations, which is solved to find the Legendre coeffici...

متن کامل

On the complexity of a family related to the Legendre symbol

Ahlswede, Khachatrian, Mauduit and A. Sárközy introduced the notion family-complexity of families of binary sequences. They estimated the family-complexity of a large family related to Legendre symbol introduced by Goubin, Mauduit and Sárközy. Here their result is improved, and apart from the constant factor the best lower bound is given for the family-complexity. 2000 AMS Mathematics Subject C...

متن کامل

Hamilton equations for non-holonomic systems

Hamilton equations for Lagrangian systems on fibred manifolds, subjected to general non-holonomic constraints (i.e., not necessarily affine in the velocities) are studied. Conditions for existence of a non-holonomic Legendre transformation are discussed, and the corresponding formulas for constraint momenta and Hamiltonian are found.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007